

High performance and engineering plastic solutions for the oil and gas industry

Plastics in application: Oil and Gas industry

Nowadays, technical plastics have a major contribution to make towards improving existing solutions because modern materials offer a wider range of benefits. These benefits include:

- \rightarrow Weight reductions
- \rightarrow Corrosion resistance
- \rightarrow Thermal decoupling and
- \rightarrow Minimised noise emissions

The progress currently being made in the oil and gas field is largely due to the use of modern materials.

Ensinger has a range of over one hundred high performance and engineering plastic materials, offering a variety of properties that benefit a wide range of applications, including those within the oil and gas sector. Materials from within the range are being used increasingly in HPHT applications.

Hydrophone housing

Engineering plastics are often used in such devices as they benefit from key factors such as impact resistance, strong chemical resistance, dimensional stability and acoustic properties.

Seals and back up rings

In areas of pressure such as the circulation system materials within the Ensinger TECAPEEK family are the perfect choice due to their novel characteristics and behaviours in such demanding environments.

Remotely Operated Vehicles (ROV)

ROVs used for offshore inspections are widely made with Polyolefines due to their light weight, high impact properties and cost effectiveness. Ensinger's expertise in developing and manufacturing high performance and engineering plastic materials has enhanced its product portfolio to suit a wide range of different applications.

With a number of worldwide production facilities, Ensinger has a vast knowledge of plastic material production, with techniques that include:

- \rightarrow Extrusion
- \rightarrow Casting
- \rightarrow Compression moulding
- \rightarrow Injection moulding
- \rightarrow Compounding
- \rightarrow Spin Moulding
- → Machining

Bushings and gears

Typically in the pumping systems above ground where TECAST (Cast Nylon) can benefit from its high degree of toughness, strength and good sliding properties.

Ensinger's range of materials is also suitable for use in valve seats, thrust washers, compressor components, logging tools and gear applications within the oil and gas field.

As well as oil and gas, Ensinger's products are suitable for use in a variety of alternative energy markets including, photovoltaic, wave and tidal, fuel cells, bio fuels and hydropower technology.

Typical applications of technical plastics in the oil and gas industry

		Sub-sea connectors	Seals	back-up rings	Valve seats	Hydrophone housings	Covers	Bushings	Wire Rope Sheaves	Winch Drum Shells	Components for ROVs	Framework for ROVs
TECAPEEK natural	PEEK	•	•	•	•							
TECAPEEK GF30 natural	PEEK	•	•	•	•							
TECATRON natural	PPS	•										
TECAFORM AH natural	POM-C					•	•					
TECAFORM AD natural	РОМ-Н					•	•					
TECAST T natural	PA 6 C							•	•	•		
TECAFINE PP natural	PP										•	•
TECAFINE PE natural	PE										•	•

Classification of plastics

amorphous semi-crystalline

Back-up ring TECAPEEK natural (PEEK) High thermal resistance High mechanical stability Excellent chemical resistance

Product portfolio for the oil and gas industry

Material availability

Ensinger has over one hundred high performance and engineering plastic materials within its portfolio available in either rod, sheet or tube. Materials can be modified with certain fillers to enhance the properties and make them perfectly suited for specific applications. The following table displays the range of shapes and sizes available within material ranges that are typically used within oil and gas applications.

Ensinger Trade Name	Polymer Name	Rod (dia)	Sheet (thickness)	Tube (OD)	
TECASINT	PI	6-100 mm	5-100 mm		
T SERIES	PEEK/PBI	Please contact us	for details of availa	bility	
TECATOR	PAI	5-100 mm	1-40 mm	40-360 mm	
TECAPEEK	PEEK	3-200 mm	5-100 mm	40-360 mm	
TECATRON	PPS	10-60 mm	10-70 mm		
TECASON	PSU/PPSU	8-150 mm	10-80 mm		
TECAPEI	PEI	8-150 mm	10-80 mm		
TECAST	PA 6 C	50-800 mm	8-200 mm	50-600 mm	
TECAMID	PA 6/PA 66	4-250 mm	5-100 mm	25-300 mm	
TECAFORM	POM	3-250 mm	5-150 mm	20-505 mm	
TECAPET	PET	10-180 mm	8-100 mm		
TECANAT	PC	3-250mm	10-100 mm		

Sub-sea connectors TECAPEEK natural (PEEK) Good electrical insulation High dimensional stability Excellent chemical resistance

> Framework for ROV TECAFINE PP natural (PP) Light weight High impact properties Cost effective

PEEK[®] is a registered trade mark of Victrex plc.

Ensinger[®], TECA[®], TECADUR[®], TECAFLON[®], TECAFORM[®], TECAM[®], TECAMID[®], TECANAT[®], TECANYL[®], TECAPEEK[®], TECAPET[®], TECAPRO[®], TECASINT[®], TECASON[®], TECAST[®], TECATRON[®] are registered trade marks of Ensinger GmbH. TECATOR[®] is a registered trade mark of Ensinger Inc.

Regulations

EN ISO 23936 as a whole presents general principles and gives requirements and recommendations for the selection and qualification, and gives guidance for the quality assurance, of non-metallic materials for service in equipment used in oil and gas production environment, where the failure of such equipment could pose a risk to the health and safety of the public and personnel or to the environment. The intent of part 1 of EN ISO 23936:2009 is to define requirements and recommendations for the selection and qualification of thermoplastic materials for service in equipment used in oil and gas production. The technical requirements for qualification of thermoplastic materials in oil and gas environments are described in Annex B.1

The NORSOK standards are developed by the Norwegian petroleum industry to ensure adequate safety, value adding and cost effectiveness for petroleum industry developments and operations. The polymer materials covered by the NORSOK standard M-710, Edition 3, September 2014 are elastomers and thermoplastics used for offshore oil and gas production.²

Both standards require quality control tests such as specific gravity, hardness, tensile property and elongation tests, as well as chemical resistance test procedures for the qualification

of thermoplastic materials exposed to fluids at

elevated pressures and temperatures over an

extended period of time.

There are no significant differences between EN ISO 23936-1 and NORSOK M-710 for the evaluation of thermoplastics regarding sour fluid resistance. The test fluids and their distribution in the vessel are the same in each as are the acceptance criteria. The main practical difference is that ISO requires (100 \pm 10) bar of the test gas mixture to be added at room temperature before the vessel is heated to test temperature. In NORSOK M-710, the pressure requirement is (60 ± 5) bar. However, there is no reason that 100 bar cannot be specified as a NORSOK M-710 test pressure; the key condition is "to start each ageing period with the same quantity of the sour gas mixture present in the vessel". There is more H₂S present in the vessel in an ISO exposure test, which will have an, as yet, unquantified impact on performance; based on Element experience, it is not anticipated to be significant in the time periods employed herein.3 So testing according to the conditions given in EN ISO 23936-1 also gives information about the compliance with NORSOK M-710.

Comparison of settings in EN ISO 23936-1 and NORSOK M-710

Pressure [bar] 300

 ¹Source EN ISO 23936-1:2009: Petroleum, petrochemical and natural gas industries – Non-metallic materials in contact with media related to oil and gas production – Part 1: Thermoplastics
²Source NORSOK M-710, Edition 3, September 2014: Qualification of non-metallic materials and manufacturers, Polymers
³Source Element Materials Technology, Laboratory

10

Quality assurance / Traceability

The Ensinger quality assurance system monitors our highperformance plastic products continuously from the time of arrival of the incoming resin through to their delivery as semi-finished products. This allows us to guarantee the highest pos¬sible standard of product quality and to minimize defects and complaints. This quality assurance process entails the performance of various tests at every stage of the work process.

The raw materials are processed to stock shapes in accordance with manufacturer's instructions. The production processes and specifications used are suitably documented. An effective system of quality assurance and quality control is set out within the EN ISO 9001 certification.

Due to product coding and statements of conformity Ensinger has direct traceability of the delivered semifinished product.

1. Invoice / delivery note

The order and invoice number is shown on the invoice / delivery note, for semi-finished products the batch num ber is also shown on the delivery note. This allows goods to be traced back using these numbers. A certificate to EN ISO 10204 is issued on an order-specific basis.

2. Semi-finished products

The production and manufacturing number is located on the semi-finished product. Starting with the production or manufacturing number, data from the production process can be traced (production data, production protocol, control cards).

3. Compounds

The lot number of the compound can be determined from the production/manufacturing number of the semi-finished product.

4. Row materials

The lot number of the compound is traceable back to the formulation and so to the delivered raw material batch, the relevant raw material specification and the safety data sheet.

Key facts at a glance

Ensinger secures foolproof traceability from the delivery note to the raw material.

Production number

FAOs:

What is the difference between testing with distilled water and seawater?

Both standards, EN ISO 23936 and NORSOK M-710 specify testing with distilled water, although using the seawater might tend to get nearer to the real environment. According to comparison tests performed by Victrex, using both seawater and distilled water in various ageing tests, no major differences between the two environments could be observed.4

What is the influence of different calculation methods for the lifetime estimation via Arrhenius curves (based on maximum stress or tensile modulus)?

Modulus rises early in each exposure situation, stabilizing after 3-4 weeks; annealing is believed to be the cause. Maximum stress exhibits a largely linear reducing trend with time, with increased exposure temperature increasing the rate of change. Strain at break follows the same pattern, but more data scatter is apparent. For unfilled products, which yield when tensile tested to failure, the optimum property for life estimation is maximum stress. Maximum stress is yield stress initially. Tensile modulus is not a good indicator of material deterioration, being calculated at very low strain. Break strain is a possibility but is subject to more scatter than maximum stress. Linear regression analysis allows the time to attain a 50% reduction in stress level to be calculated, and these times are used as input to the Arrhenius equation for the lifetime estimation.5

ative.

available?

⁴ Victrex plo manufacturers. Polymers

6

How do NORSOK M-710, Edition 3 and EN ISO 23936 correlate?

As a result of the joint industry effort to prepare EN ISO 23936-2 dealing with qualification of elastomers, NORSOK standard M-710, Edition 3 refers to the requirements in EN ISO 23936-2:2011 for elastomers. For thermoplastic materials, the qualification requirements are given directly in the NORSOK standard and aligned with requirements and format in EN ISO 23936-2. The thermoplastics part EN ISO 23936-1:2009 is considered as inform-

Is there a list of NORSOK qualified materials

There does neither exist, nor are there currently plans to introduce a NTS/NORSOK qualification or approval strategy or a public listing of qualified manufacturers in this regard.6

⁵Element Materials Technology, Laboratory ⁶NORSOK M-710, Edition 3, September 2014: Qualification of non-metallic materials and

Do you have any other questions?

Please do not hesitate to contact our technical service: techservice.shapes@de.ensinger-online.com or by telephone on +49 7032 819 101

Ensinger Germany

Ensinger GmbH Rudolf-Diesel-Str. 8 71154 Nufringen Tel. +49 7032 819 0 Fax +49 7032 819 100 www.ensinger-online.com

Ensinger GmbH Mercedesstr. 21 72108 Rottenburg a. N. Tel. +49 7457 9467 100 www.ensinger-online.com

Ensinger GmbH Wilfried-Ensinger-Str. 1 93413 Cham Tel. +49 9971 396 0 www.ensinger-online.com

Ensinger GmbH Borsigstr. 7 59609 Anröchte Tel. +49 2947 9722 0 www.ensinger-online.com

Ensinger GmbH Mooswiesen 13 88214 Ravensburg Tel. +49 751 35452 0 www.thermix.de

Ensinger worldwide

Austria Ensinger Sintimid GmbH Ensingerplatz 1 4863 Seewalchen Tel. +43 7662 88788 0 www.ensinger-sintimid.at

Brazil

Ensinger Indústria de Plásticos Técnicos Ltda. Av. São Borja 3185 93.032-000 São Leopoldo-RS Tel. +55 51 35798800 www.ensinger.com.br

China

Ensinger (China) Co., Ltd. 1F, Building A3 No. 1528 Gumei Road Shanghai 200233 Tel. +86 21 52285111 www.ensinger-china.com

Czech Republic

Ensinger s.r.o. Prùmyslová 991 P.O. Box 15 33441 Dobřany Tel. +420 37 7972056 www.ensinger.cz

Denmark

Ensinger Danmark A/S Rugvænget 6B 4100 Ringsted Tel. +45 7810 4410 www.ensinger.dk

France

Ensinger France S.A.R.L. ZAC les Batterses ZI Nord 01700 Beynost Tel. +33 4 78554574 www.ensinger.fr **Germany** Ensinger GmbH Rudolf-Diesel-Straße 8 71154 Nufringen Tel. +49 7032 819 0 www.ensinger-online.com

India Ensinger India Engineering Plastics Private Ltd. R.K Plaza, Survey No. 206/3 Plot No. 17, Lohgaon, Viman Nagar 411 014 Pune Tel. +91 20 2674 1033 www.ensinger.in

Italy Ensinger Italia S.r.I. Via Franco Tosi 1/3 20020 Olcella di Busto Garolfo (MI) Tel. +39 0331 562111

Japan

www.ensinger.it

Ensinger Japan Co., Ltd. 3-5-1, Rinkaicho, Edogawa-ku, Tokyo 134-0086, Japan Tel. +81 3 5878 1903 www.ensinger.jp

Poland

Ensinger Polska Sp. z o.o. ul. Geodetów 2 64-100 Leszno Tel. +48 65 5295810 www.ensinger.pl

Singapore

Ensinger Asia Holding Pte Ltd. 63 Hillview Avenue # 04-07 Lam Soon Industrial Building Singapore 669569 Tel. +65 65524177 www.ensinger.com.sg

Spain

Ensinger S.A. Girona, 21-27 08120 La Llagosta Barcelona Tel. +34 93 5745726 www.ensinger.es

Sweden

Ensinger Sweden AB Stenvretsgatan 5 SE-749 40 Enköping Tel. +46 171 477 050 www.ensinger.se

Taiwan

Ensinger Asia Holding Pte Ltd. 1F, No.28, Keda 1st Rd. Zhubei City Hsinchu County 302 Tel. +886 3 6570185 www.ensinger.asia/tw

United Kingdom

Ensinger Limited Wilfried Way Tonyrefail Mid Glamorgan CF39 8JQ Tel. +44 1443 678400 www.ensinger.co.uk

USA

Ensinger Inc. 365 Meadowlands Boulevard Washington, PA 15301 Tel. +1 724 746 6050 www.ensinger-inc.com

Thermoplastic engineering and high-performance plastics from Ensinger are used in every important sector of industry today. Their economy and performance benefits have seen them frequently replace classically used materials.

08/15 E9911075A025GB